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Abstract

An efficient new coupled zigzag theory is developed for dynamics of piezoelectric composite and
sandwich beams with damping. Third order zigzag approximation is used for the axial displacement. The
electric field is approximated as piecewise linear for the sublayers. The conditions of zero transverse shear
stress at the top and bottom and its continuity at the layer interfaces, are for the first time enforced exactly

in this theory. Using these conditions, the displacement field is expressed in terms of three primary
displacement variables and potentials. The governing equations are derived from Hamilton’s principle.
Analytical solutions of simply-supported beams are obtained for natural frequencies and steady state
forced response under harmonic electromechanical load with damping. These are compared with the exact
two-dimensional piezoelasticity solution and the uncoupled first order shear deformation theory (FSDT)
solution. The new results of forced damped response are more accurate than the FSDT solution and agree
very well with the exact solution for both thin and thick hybrid beams. The developed theory adequately
models open and closed circuit electric boundary conditions to accurately predict the response.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric hybrid laminates with embedded or surface-bonded piezoelectric layers, acting as
sensors and actuators to achieve desired control, form part of a new generation of adaptive
structures. To achieve these objectives, robust coupled electromechanical models are needed to
obtain accurate response of these hybrid structures. This work presents a new zigzag model for
dynamic analysis of hybrid beams with embedded or surface-bonded piezoelectric layers. A review
of three-dimensional (3-D) continuum-based approaches, 2-D theories for plates and shells and
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1-D theories for beams, along with their comparative study for plates under static loading, has
been presented by Saravanos and Heyliger [1]. Analytical 2-D solutions for free vibration [2] and
harmonic forced response [3] are available only for simply-supported infinite flat panels and
beams. The 3-D finite element analysis [4] results in large problem size which may become
computationally costly for practical dynamics and control problems. Hence, accurate 1-D beam
models are required without too much loss of accuracy compared to the 2-D models. Early works
employed elastic beam models [5–7] with effective forces and moments due to induced strain of
actuators. A discrete layer theory (DLT) with layerwise approximation of displacements was
developed for elastic laminated beams with induced actuation strain by Robbins and Reddy [8].
Classical laminate theory (CLT) [9], first order shear deformation theory (FSDT) [10] and the
refined third order theory (TOT) [11,12] have been applied without electromechanical coupling to
hybrid beams and plates. Coupled CLT, FSDT and TOT [13–17] solutions have been reported for
piezoelectric composite beams and plates including the charge equation of electrostatics and
electromechanical coupling. Saravanos and Heyliger [18] have presented coupled DLT using
layerwise approximation for displacement and potential, which yields very accurate results for
thin and thick beams. But it is expensive for practical problems since the number of displacement
unknowns depend on the number of sublayers. Except for the coupled DLT [18], in which the
deflection w is taken as piecewise linear, no other theory described above includes the transverse
normal strain induced through the piezoelectric coefficient d33: This strain has considerable effect
on the response for electrical load [1]. Kapuria [19] and Kapuria et al. [20] presented a coupled
layerwise theory, for static and dynamic analysis of hybrid beams, using a third order zigzag
approximation for the axial displacement u with a sublayerwise linear approximation for the
potential f: The deflection w is approximated to account for the piezoelectric transverse normal
strain induced by the electric potential. The model considers both the axial and transverse electric
fields. The conditions of zero shear stress tzx at the top and bottom surfaces and the conditions of
continuity of tzx at the layer interfaces are approximately satisfied by neglecting the explicit
contribution of f: The theory is formulated in terms of only three primary displacement
unknowns. It is as efficient as an equivalent single layer (ESL) theory and yet yields fairly accurate
through-the-thickness variations of displacements, electric field and stresses. This theory has been
recently improved [21] for static analysis using similar approximations for u;w;f as in Ref. [20],
but the conditions on tzx at the top, bottom and the layer interfaces are exactly satisfied. The
coupled theory includes the cases wherein piezoelectric layers may be bonded to the surface of the
elastic substrate or embedded in it. This theory has yielded accurate results for a test beam, a
sandwich beam and a piezoelectric bimorph.
The statics theory of Ref. [21] is extended herein to dynamics. The coupled dynamic field

equations and the variationally consistent boundary conditions are derived using the Hamilton’s
principle. The accuracy of the theory in estimating local and global dynamic response is assessed
for simply-supported hybrid beams. The undamped natural frequencies and steady state forced
damped response of the zigzag theory are compared with the exact 2-D piezoelasticity solution
and the uncoupled FSDT solution. The effects of the ratio of span-to-thickness on the accuracy of
the theory is investigated for a highly inhomogeneous test beam, a hybrid composite beam and a
hybrid sandwich beam. The present theory yields highly accurate results for free and forced
response of thin, moderately thick and even thick beams. Accurate results are obtained for open
circuit as well as closed circuit electric conditions.
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2. Formulation of zigzag theory for beams

Consider a hybrid beam (Fig. 1) of width b; thickness h and length a; made of L perfectly
bonded orthotropic layers with longitudinal axis x; subjected to transverse load on the bottom
and the top surfaces. The actuation potentials are applied to some piezoelectric layers. The loads
have no variation along the width b: The axis along the width is y: The piezoelectric layers have
poling along the thickness axis z: The sensors and actuators, considered herein, are of
orthorhombic materials of class mm2 symmetry [22], since the commonly used materials PZT and
PVDF belong to this class. The material of the piezoelectric layers can be different. The midplane
of the beam is chosen as the xy plane with z ¼ z0 ¼ �h=2 and z ¼ zL ¼ h=2 being the bottom and
the top surfaces of the beam. The z co-ordinate of the bottom surface of the kth layer (numbered
from the bottom) is denoted as zk�1 and its material symmetry direction 1 is at an angle yk to the
x-axis. The reference plane z ¼ 0 either passes through or is the bottom surface of the k0th layer.
For a beam with a small width, the usual assumptions for mathematical simplification of the 1-D
model made by other researchers which are retained in the present theory are: assume plane
state of stress ðsy ¼ tyz ¼ txy ¼ 0Þ; neglect transverse normal stress ðszC0Þ and assume the
axial and transverse displacements u;w and electric potential f to be independent of y: In the
classical theory sz is neglected. Exact elasticity solutions for thick beams and plates [23] have
revealed that the contribution of sz to the strain energy is much smaller compared to that of tzx:
Hence, as in many higher order theories, the approximation sz ¼ 0 is retained in the present
model. The strain–displacement relations and the electric field–potential relations for the
directions x; z are

ex ¼ u;x; ez ¼ w;z; gzx ¼ u;z þ w;x; Ex ¼ �f;x; Ez ¼ �f;z; ð1Þ

where a subscript comma denotes differentiation. Unlike most other studies, Ex is not considered
as zero, since it is an electric field induced by the piezoelectric coupling. With these assumptions,
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the general 3-D constitutive equations for stresses and electric displacements Dx;Dz

reduce to [19]

sx

Dz

" #
¼

#Q11 �#e31

#e31 #Z33

" #
ex

Ez

" #
;

tzx

Dx

" #
¼

#Q55 �#e15

#e15 #Z11

" #
gzx

Ex

" #
; ð2Þ

where #Q11; #Q55; #e31; #e15; #Z11; #Z33 are related to Young’s moduli Yi; shear moduli Gij ; the Poisson
ratios nij ; piezoelectric strain constants dij; dielectric constants eij and the orientation of the
material symmetry axes with respect to the x-axis.
The potential field is assumed as piecewise linear between nf points z

j
f; j ¼ 1; 2;y; nf; across

the thickness h [21] with z1f ¼ z0; z
nf
f ¼ zL and

fðx; z; tÞ ¼ C j
fðzÞf

jðx; tÞ; ð3Þ

where f jðx; tÞ ¼ fðx; z j
f; tÞ: C

j
fðzÞ are linear interpolation functions. The summation convention is

used for the repeated index j and for j0 used later. nf can differ from L and is determined by the
accuracy required of f: This enables piecewise linear modelling of f in the piezoelectric layers by
dividing them into sublayers. Two-dimensional exact piezoelasticity solutions [3,19] have revealed
that for moderately thick hybrid beams under electric potential load, the deflection w has
significant variation across the thickness of the piezoelectric layers. This is due to the significant
contribution to ez by the electric field through the d33 coefficient. However, sx has negligible
contribution to ez: Hence to introduce this effect in the present 1-D model, the deflection w is not
approximated as uniform across the thickness. Instead the deflection w is approximated by
integrating the constitutive equation for ez by neglecting the contribution of sx: ez ¼ w;z ¼
�nxzsx=Yx þ d33EzC� d33f;z: Then

wðx; z; tÞ ¼ w0ðx; tÞ � %C j
fðzÞf

jðx; tÞ; ð4Þ

where %C j
fðzÞ ¼

R z

0 d33C
j
f;zðzÞ dz is a piecewise linear function.

The axial displacement u for the kth layer is assumed [21,24] as a combination of a third order
global variation across the thickness h with layerwise linear variation:

uðx; z; tÞ ¼ ukðx; tÞ � zw0;xðx; tÞ þ zckðx; tÞ þ z2xðx; tÞ þ z3Zðx; tÞ; ð5Þ

where uk and ck denote the translation and rotation variables of the kth layer. In all third order
zigzag theories [24], the term ð�zw0;xÞ in Eq. (5) is required to satisfy the shear traction-free
conditions at the top and the bottom and the shear continuity conditions at the layer interfaces.
Eqs. (2)–(5) yield

tzx ¼ #Qk
55ðck þ 2zxþ 3z2ZÞ þ ½#ek

15C
j
fðzÞ � #Qk

55
%C j
fðzÞ�f

j
;x: ð6Þ

For the k0th layer denote uðx; 0; tÞ ¼ u0ðx; tÞ ¼ uk0
ðx; tÞ; ck0

ðx; tÞ ¼ c0ðx; tÞ: The functions
uk;ck; x; Z are expressed, as in Ref. [21], in terms of u0;w0;c0;f

j; using the ðL � 1Þ conditions
each for the continuity of tzx and u at the layer interfaces and the two shear traction-free
conditions tzx ¼ 0 at z ¼ z0; zL: Thus

uðx; z; tÞ ¼ u0ðx; tÞ � zw0;xðx; tÞ þ RkðzÞc0ðx; tÞ þ RkjðzÞf j
;xðx; tÞ; ð7Þ
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where the cubic functions RkðzÞ;RkjðzÞ are listed in Eq. (A.1) in Appendix A. Thus f;w; u are
expressed by Eqs. (3), (4), and (7) in terms of the primary variables u0;w0;c0 and f j: The number
of the primary displacement variables is three which is the same as in the FSDT.
The dynamic field equations and the variationally consistent boundary conditions are

formulated using extended Hamilton’s principle for a piezoelectric continuum [25]:

Z t2

t1

Z
V

ðr ’uid ’ui � sijdeij � Didf;iÞ dV þ
Z
G
ðT n

i dui þ DndfÞ dG

"

�
X%nf
i¼1

Z
A ji

ðDzu
� Dzl

Þdf ji dA ji

#
dt ¼ 0 ð8Þ

with ðdui; df; df
ji Þ ¼ 0 at times t ¼ t1; t2: The overdot represents differentiation with respect to

time. V and G are the volume and surface area of the beam and r is the mass density. A ji is an
internal surface z ¼ z

ji
f where f ji is prescribed and Dzl

� Dzu
¼ qji is the extraneous surface charge

density on this surface. The subscripts u and l in Dzu
and Dzl

refer to the faces of the interface at
ðz ji

f Þ
þ; ðz ji

f Þ
�: The total number of such prescribed potentials is %nf: Dn is the surface charge density

and T n
i are the stress vector components. Let p1

z ; p
2
z be the forces per unit area applied on the

bottom and top surfaces of the beam in direction z: Let there be distributed viscous resistance
force with the distributed viscous damping coefficient c1 per unit area per unit transverse velocity
of the top surface of the beam.
The field equations are formulated in terms of beam inertia elements Ikl ; I

j
k4; I

jj0

44 ; %I22; %I
j
24; %I

jj0

44 ;
beam stress resultants Nx; Mx; Px; Qx; S j

x ; %Q j
x ; beam electric displacement resultants H j; G j; beam

damping coefficients #c1; c
j
f; c

jj0

f and the beam mechanical and electrical loads F2;F
j
4 ; which are

defined in Eqs. (A.2)–(A.6) in Appendix A. The coupled field equations of dynamics consist of the
following three equations of motion and nf equations for the electric potentials:

I11 .u0 � I12 .w0;x þ I13 .c0 þ I
j0

14
.f j0

;x � Nx;x ¼ 0;

� I12 .u0;x þ I22 .w0;xx � %I22 .w0 � I23 .c0;x � I
j0

24
.f j0

;xx þ %I
j0

24
.f j0 þ Mx;xx � #c1 ’w0 þ c

j0

f
’f j0 þ F2 ¼ 0;

I13 .u0 � I23 .w0;x þ I33 .c0 þ I
j0

34
.f j0

;x � Px;x þ Qx ¼ 0;

I
j
14 .u0;x � I

j
24 .w0;xx þ %I

j
24 .w0 þ I

j
34
.c0;x þ I

jj0

44
.f j0

;xx � %I
jj0

44
.f j0

� S j
x;xx þ %Q j

x;x þ H j
;x � G j þ c

j
f ’w0 � c

jj0

f
’f j0 þ F

j
4 ¼ 0; j ¼ 1; 2;y; nf: ð9Þ

The essential or natural boundary conditions at the ends at x ¼ 0; a are

u0 ¼ u�0 or Nx ¼ N�
x ;

w0 ¼ w�0 or � I21 .u0 þ I22 .w0;x � I23 .c0 � I
j0

24
.f j0

;x þ Mx;x ¼ /tzxS�;

w0;x ¼ w�0;x or Mx ¼ M�
x ;

c0 ¼ c�0 ; or Px ¼ P�x ;
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f j ¼ f j� or I
j
41 .u0 � I

j
42 .w0;x þ I

j
43
.c0 þ I

jj0

44
.f j0

;x þ H j � S j
x;x þ %Q j

x ¼ H j� �/ %C j
fðzÞtzxS�;

f j
;x ¼ f j�

;x or S j
x ¼ S j�

x ; ð10Þ

where � denotes a prescribed value.
The coupled electro-mechanical dynamic equations in terms of the primary variables

u0;w0;c0;f
j are obtained by substitution of the expressions of the resultants of stresses and

electric displacements from Eq. (A.4) into Eq. (9)

%L .%U þ #L ’%U þ L %U ¼ %P; ð11Þ

where

%U ¼ ½ u0 w0 c0 f1 f2
y f nf �T; %P ¼ ½P1 P2 P3 P1

4 P2
4 y P

nf
4 �T: ð12Þ

%L and L are symmetric matrices of linear differential operators in x and #L is a symmetric
matrix. Their elements are listed in Eqs. (A.7) and (A.8) in Appendix A. After solving for
%U; tzx is obtained by integrating the 2-D equation of motion in the x direction to yield tzx ¼R z

�h=2ðr .u � sx;xÞ dz:

3. An assessment of zigzag theory for beams

In order to assess the accuracy of the coupled zigzag theory developed herein, analytical
solution is obtained for simply-supported beams with the following boundary conditions at
x ¼ 0; a:

Nx ¼ 0; w0 ¼ 0; Mx ¼ 0; Px ¼ 0; f j ¼ 0; S j
x ¼ 0; j ¼ 1;y; nf ð13Þ

and compared with the exact piezoelastic solution [2,3]. The solution of Eq. (11) is expanded in
Fourier series as

ðw0;f
j;Nx;Mx;Px;S

j
x ;G

j; pi
z; qjÞ ¼

XN
n¼1

ðw0;f
j;Nx;Mx;Px;S

j
x ;G

j; pi
z; qjÞn sin %nx;

ðu0;c0;Qx; %Q
j

x;H
jÞ ¼

XN
n¼1

ðu0;c0;Qx; %Q
j

x;H
jÞn cos %nx ð14Þ

with %n ¼ np=a: Substituting these in Eq. (11) yields for an nth Fourier component, the coupled
equations

M .%U n þ C ’%U n þ K %U n ¼ %P n; ð15Þ

where %U n; %P n are the nth Fourier components of %U; %P: The elements of the symmetric inertia,
damping and stiffness matrices M;C;K are not listed for brevity.

%U is partitioned into a set of three mechanical displacement variables U ; a set of unknown
output voltages Fs at z

j
f’s where f is not prescribed and a set of known input actuation voltages

Fa at the active actuated surfaces. %P is partitioned into a set of three mechanical loads P; a set of
known input electric loads Qs at z

j
f’s where f is not prescribed and a set of unknown output

electrical loads Qa at the actuated interfaces. Eq. (15) can be partitioned and re-arranged so that

ARTICLE IN PRESS

S. Kapuria et al. / Journal of Sound and Vibration 279 (2005) 345–371350



these can be solved for a beam in active/sensory/active–sensory mode for steady state response
under harmonic electromechanical load and for natural frequencies of free oscillations.
For free undamped vibration at natural frequency on; Eq. (15) reduces to an eigenvalue

problem. Consider response under longitudinally sinusoidal [i.e., varying as sinðnpx=aÞ]
electromechanical harmonic load at forcing frequency o:

P n ¼ P n
0 cosot; F n

a ¼ F n
a0
cosot; Q n

s ¼ Q n
s0
cosot: ð16Þ

Let the steady state damped response be

*U n ¼ ½U n F n
s �T ¼ *U n

0 cosot þ *U n�
0 sinot; Q n

a ¼ Q n
a0
cosot þ Q n�

a0
sinot: ð17Þ

Substituting from Eqs. (16) and (17) into Eq. (15) and equating separately the cosot and the
sinot terms to zero, yields algebraic equations for *U n

0 ; *U n�
0 ;Q n

a0
;Q n�

a0
:

Results are presented for three highly inhomogeneous simply-supported hybrid beams (a), (b)
and (c) (Fig. 2). All these beams consist of an elastic substrate with a piezoelectric layer of PZT-5A
[26] of thickness 0:1h bonded to its top. The PZT-5A layers have poling in þz direction. The
top and the bottom of the substrate are grounded. The stacking order is mentioned from the
bottom. Beam (a) has a 5-ply substrate of thickness 0:09h=0:225h=0:135h=0:18h=0:27h of
materials 1=2=3=1=3 which have highly inhomogeneous stiffness in tension and shear and is a
good test case [27]. The substrate of beam (b) is a graphite-epoxy composite (material 4 [26])
laminate with 4 layers of equal thickness 0:225h with lay-up ½0	=90	=90	=0	�: The substrate
of beam (c) is a three-layer sandwich with graphite-epoxy faces and a soft core [23] with
thicknesses 0:09h=0:72h=0:09h: The top surface of PZT layer is subjected to either closed circuit
condition (C) for which the surface potential f nf is prescribed or open circuit condition (O) for
which the applied surface charge density at the top qnf ¼ 0: Convergence studies have revealed
that converged results are obtained by discretizing the electric field across the PZT layer by
piecewise linear variation across four equal sublayers. The material properties are:
½ðY1;Y2;Y3;G12;G23;G31Þ; n12; n13; n23� ¼

Material 1: ½ð6:9; 6:9; 6:9; 1:38; 1:38; 1:38Þ GPa; 0:25; 0:25; 0:25�
Material 2: ½ð224:25; 6:9; 6:9; 56:58; 1:38; 56:58Þ GPa; 0:25; 0:25; 0:25�
Material 3: ½ð172:5; 6:9; 6:9; 3:45; 1:38; 3:45Þ GPa; 0:25; 0:25; 0:25�
Material 4: ½ð181; 10:3; 10:3; 7:17; 2:87; 7:17Þ GPa; 0:28; 0:28; 0:33�
Face: ½ð131:1; 6:9; 6:9; 3:588; 2:3322; 3:588Þ GPa; 0:32; 0:32; 0:49�
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Core: ½ð0:2208; 0:2001; 2760; 16:56; 455:4; 545:1Þ MPa; 0:99; 3
 10�5; 3
 10�5�
PZT-5A: ½ð61:0; 61:0; 53:2; 22:6; 21:1; 21:1Þ GPa; 0:35; 0:38; 0:38�;

and ½ðd31; d32; d33; d15; d24Þ; ðZ11; Z22; Z33Þ� ¼ ½ð�171;�171; 374; 584; 584Þ 
 10�12 m=V; ð1:53; 1:53;
1:5Þ 
 10�8 F=m�: The density of materials 1; 2; 3; 4 is 1578 kg=m3 and of PZT-5A, face, and core
is 7600, 1000 and 70 kg=m3; respectively.
The accuracy of the present theory is assessed by comparison with the exact 2-D piezoelasticity

solution [3]. Since the number of displacement variables in the present theory is the same as in the
FSDT, results are also compared with the FSDT. The shear correction factor for the FSDT
solution is taken as 5

6
: No comparison is done with other layerwise theories which involve more

displacement unknowns, since the accuracy of the present theory is established directly by
comparison with the exact solution.
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Table 1

Exact natural frequencies %on (open circuit condition) and % error of zigzag theory (Pres.) and FSDT

n Mode S Test beam (a) Composite beam (b) Sandwich beam (c)

Exact Pres. FSDT Exact Pres. FSDT Exact Pres. FSDT

1 1 5 5.8909 0.45 48.56 5.5344 0.55 16.82 3.9675 0.99 61.19

10 8.1605 0.32 18.48 7.4425 0.25 6.66 6.2158 0.48 27.24

20 9.4811 0.13 5.00 8.3699 0.08 1.64 7.8633 0.18 8.17

100 10.087 0.00 �0.34 8.7552 �0.01 �0.42 8.7586 0.04 �0.33

2 5 9.6540 3.76 15.20 7.4406 3.12 2.28 5.7993 1.39 4.73

10 10.844 0.67 5.34 7.8294 0.86 0.64 6.2114 0.43 4.81

20 11.356 0.13 1.26 7.9667 0.23 �0.02 6.5865 0.14 1.66

100 11.539 0.00 �0.14 8.0159 0.01 �0.26 6.8108 0.01 �0.66

3 5 3.0370 3.92 48.64 2.3379 7.16 18.92 2.6665 1.47 22.47

10 1.9759 1.44 101.3 1.7711 1.42 23.48 1.6109 0.12 52.92

20 1.6264 0.86 136.0 1.5685 0.61 28.69 1.2040 0.09 84.97

100 1.5049 0.71 152.0 1.4966 0.41 31.13 1.0458 0.20 105.33

2 1 5 15.140 2.61 78.11 13.625 1.34 24.59 8.9317 2.53 86.79

10 23.563 0.45 48.57 22.137 0.56 16.82 15.870 0.99 61.19

20 32.642 0.33 18.48 29.770 0.25 6.66 24.863 0.48 27.24

100 40.014 0.03 0.37 34.811 0.02 �0.13 34.528 0.03 0.80

3 1 5 25.673 10.53 83.85 22.058 3.66 24.25 14.254 5.59 88.61

10 41.171 0.95 68.41 38.128 0.83 22.48 25.669 1.61 79.19

20 62.007 0.41 34.24 57.829 0.42 12.18 44.033 0.74 46.21

100 88.836 0.05 1.51 77.576 0.03 0.31 75.850 0.07 2.67

5 1 5 44.742 46.58 95.84 41.458 8.63 14.99 25.907 16.71 80.31

10 81.317 5.75 82.09 71.214 2.24 24.84 46.167 3.84 89.02

20 128.53 0.59 60.00 120.29 0.68 20.21 82.998 1.27 71.91

100 237.03 0.13 5.00 209.25 0.08 1.64 196.58 0.18 8.17
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The frequencies and the modal entities are non-dimensionalized as follows with S ¼ a=h:

%o ¼ onaS1ðr0=Y0Þ
1=2; ð %u; %w; %fÞ ¼ ðu;w; 103fSd0Þ=maxðu;wÞ;

ð %sx; %tzxÞ ¼ ðsx; tzxÞSh=Y0 maxðu;wÞ;

where maxðu;wÞ denotes the largest value of u and w through the thickness for a particular mode
and S1 ¼ S; 1; 1=S for the first three thickness modes, respectively. Y0 ¼ 6:9 GPa for beams (a)
and (c) and Y0 ¼ 10:3 GPa for beam (b), d0 ¼ 374
 10�12 CN�1; r0 ¼ 1000 kg=m3 for beam (c)
and r0 ¼ 1578 kg=m3 for the other beams.
The dimensionless natural frequencies obtained by the exact 2-D piezoelasticity solution, and

the percentage error of the zigzag theory (Zigzag) and the uncoupled FSDT solutions, are given in
Table 1 for beams (a)–(c) with open circuit condition. The frequencies are listed for the bending,
shear, and extension modes 1; 2; 3 for n ¼ 1 and for only the flexural mode 1 for n ¼ 2; 3; 5: Similar
results for the closed circuit condition are presented in Table 2. The maximum error in the present
zigzag theory is 5.8% for the first five bending modes of moderately thick beams with S ¼ 10%
and 10.6% for the first three bending modes of thick beams with S ¼ 5: By contrast, the
corresponding errors in the FSDT are 89.0% and 88.6% with large errors for the sandwich beam
(c). For a thin beam with S ¼ 20; the maximum error in the zigzag theory is only 1.3% for the first
five bending modes whereas it is 71.9% for the FSDT. The error in the FSDT for thin beams with
S ¼ 20 for the second bending mode itself is not small, being 18.5%, 6.7% and 27.2% for beams
(a), (b), (c), respectively. The error in the FSDT in most cases is atleast one order more than the
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Table 2

Exact bending natural frequencies %on (closed circuit condition) and % error of zigzag theory (Pres.)

n S Beam (a) Beam (b) Beam (c)

Exact Pres. Exact Pres. Exact Pres.

1 5 5.8727 0.49 5.5165 0.58 3.9537 1.00

10 8.1253 0.34 7.4119 0.26 6.1856 0.48

20 9.4318 0.14 8.3308 0.08 7.8128 0.18

100 10.028 0.02 8.7134 �0.02 8.6959 0.01

2 5 15.108 2.64 13.589 1.36 8.9001 2.52

10 23.491 0.48 22.066 0.58 15.815 1.00

20 32.501 0.34 29.647 0.26 24.742 0.48

100 39.788 0.03 34.643 0.01 34.277 0.03

3 5 25.628 10.57 22.002 3.68 14.197 5.54

10 41.069 0.99 38.020 0.86 25.583 1.62

20 61.784 0.44 57.620 0.44 43.860 0.75

100 88.345 0.06 77.204 0.03 75.318 0.07

5 5 44.676 46.71 39.307 14.38 25.809 16.57

10 81.164 5.78 71.027 2.27 45.992 3.82

20 128.18 0.63 119.93 0.71 82.720 1.28

100 235.80 0.14 208.27 0.08 195.32 0.18
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Fig. 3. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a thick ðS ¼ 5Þ test beam (a).
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Fig. 4. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a moderately thick ðS ¼ 10Þ test beam (a).
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Fig. 5. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a thick ðS ¼ 5Þ composite beam (b).
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Fig. 6. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a moderately thick ðS ¼ 10Þ composite

beam (b).
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Fig. 7. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a thick ðS ¼ 5Þ sandwich beam (c).
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Fig. 8. Distributions of %u; %w; %sx; %tzx in the fundamental thickness mode of a moderately thick ðS ¼ 10Þ sandwich

beam (c).
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error in the zigzag theory. The present zigzag theory has been able to predict quite accurately the
effect of the open and closed circuit conditions on on:
The through-the-thickness distributions of modal displacements %u; %w and stresses %sx; %tzx in the

fundamental thickness mode (flexural) are shown in Figs. 3–8 for thick and moderately thick
beams (a)–(c) at open circuit condition for n ¼ 1: The present results for %u; %w %sx; %tzx; including the
slope discontinuities in %u at the layer interfaces, are in excellent agreement with the exact 2-D
solution for both thick and thin hybrid beams with all kinds of substrate: a test case, symmetric
composite and sandwich. By contrast, the errors in the FSDT for %u; %sx; %tzx; are quite large, with
the errors increasing for the thicker beams wherein the simplified kinematic assumptions do not
hold well. The errors in the FSDT mode shapes are especially large for the test beam (a) and the
sandwich beam (c).
Consider steady state forced response of beams for two load cases:

1. Harmonic pressure excitation p2z ¼ p0 sin %nx cosot on the top surface with open circuit
condition qnf ¼ 0 on it.
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Fig. 9. Distributions of amplitude *wmð0:5a; zÞ for load case 2 ðo=o1 ¼ 0:8; n ¼ 1; %c ¼ 0Þ:
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2. Applied harmonic actuation potential on the top surface fðx; h=2; tÞ ¼ f nf ¼ f0 sin %nx cosot

(closed circuit condition).
Let the deflection of the centre of the beam be wða=2; 0; tÞ ¼ wm cosðot � kÞ with amplitude wm

and phase lag k: The following non-dimensional variables are used for wm;f0; forcing frequency o
and damping constant c1:

*wm ¼ 100wmY0=hS4p0; *f0 ¼ 104f0Y0d0=hS2p0 ðcase 1Þ; *wm ¼ 10wm=S2d0f0 ðcase 2Þ;

%o ¼ oSaðr0=Y0Þ
1=2; %c ¼ c1S=2r0aon:

The through-the-thickness distributions of the amplitude of deflection *wmð0:5a; zÞ for beams (b)
and (c) for potential load case 2 are compared in Fig. 9 for n ¼ 1;o=o1 ¼ 0:8; %c ¼ 0 and S ¼ 5; 10:
The present zigzag model is able to predict the non-uniform distribution of deflection amplitude
across the thickness quite accurately. The FSDT is unable to predict non-uniform profile of the
deflection across the thickness and yields very inaccurate results.

ARTICLE IN PRESS

Fig. 10. Amplitude *wm and phase k for test beam (a) under the load cases 1 and 2.
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The amplitude *wm and phase lag k of the central deflection for the two load cases are presented
for S ¼ 10 in Figs. 10, 11 and 12 as a function of the forcing frequency, for longitudinal spatial
mode n ¼ 1 for beams (a), (b), and (c), respectively. Undamped ð%c ¼ 0Þ; lightly damped ð%c ¼ 0:1Þ
and heavily damped ð%c ¼ 0:7Þ cases are considered. The percentage errors of the amplitude *wm and
the phase k in the zigzag theory and the FSDT are compared in Figs. 13 and 14 for the two
loadings for the lightly damped case of %c ¼ 0:1 for thick ðS ¼ 5Þ; moderately thick ðS ¼ 10Þ and
thin ðS ¼ 20Þ beams. It is observed from Figs. 10–14 that the present zigzag theory predicts the
amplitude and phase of the forced harmonic response very accurately for all beams for both load
cases and the three damping cases for the whole frequency range except for small errors for thick
ðS ¼ 5Þ beams in the neighbourhood of the natural frequency o1: In contrast, the error in the
FSDT for both amplitude and phase is quite large in the whole range of frequency for moderately
thick and thick beams with the error increasing in the neighbourhood of o1: In the range o > o1;
the error in the deflection amplitude for the FSDT is much larger for the potential load case 2
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Fig. 11. Amplitude *wm and phase k for composite beam (b) under the load cases 1 and 2.
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compared to the mechanical load case 1. Even for the lightly damped thin beams with S ¼
20; %c ¼ 0:1; the maximum errors in the FSDT are quite large being 18.2%, 6.4%, 22.4% for wm

and 23.4%, 8.4%, 28.0% for k for load case 1 and 28.9%, 8.6%, 37.7% for wm and 25.3%,
10.4%, 29.7% for k for load case 2 for the beams (a), (b), (c), respectively. One source of error in
*wm in the FSDT is due to the error of the induced transverse strain due to piezoelectricity from the
d33 coefficient. Similar trend was observed in the statics case using the layerwise theory [19] for
beam and the coupled FSDT for rectangular plate [28]. The error in *wm in the FSDT is large since
it is the cumulative effect of the errors in predicting the static deflection, the natural frequency and
the dynamic magnification factor for the forced response. The deflection amplitude and phase
response curves of test beam (a) for the third longitudinal mode n ¼ 3 are compared in Fig. 15 for
S ¼ 10: The zigzag theory yields quite accurate results for this higher mode also, with small error
in the phase for all o=o3 and small error in *wm in the neighbourhood of o=o3 ¼ 1: The errors in
the FSDT for this higher mode n ¼ 3 are much larger than those for the fundamental mode n ¼ 1:
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Fig. 12. Amplitude *wm and phase k for sandwich beam (c) under the load cases 1 and 2.
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The amplitude %wm and phase k of the composite beam (b) with S ¼ 10; %c ¼ 0:1; under harmonic
pressure and actuation potential, are presented in Fig. 16. It is observed that the zigzag solution
agrees very well with the exact 2-D solution but the FSDT solution has large error. It is concluded
from Fig. 16 that the application of a passive actuation potential has almost the same percentage
reduction of deflection amplitude for the whole range of o=o1:

4. Conclusions

The new coupled zigzag theory presented for the dynamic analysis of hybrid composite and
sandwich beams with any lay-up, is the first dynamic theory of hybrid beams in which the
conditions on the transverse shear stress, at the top, bottom, and layer interfaces are satisfied
exactly, even for the case of non-zero longitudinal electric field. The effect of the piezoelectric
transverse normal strain is accounted for in the transverse displacement field. The theory has the
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Fig. 13. Percentage error of present theory and FSDT for amplitude *wm and phase k under load case 1 for

n ¼ 1; %c ¼ 0:1:
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capability to model accurately the variation of potential across sensor and actuator layers by
appropriate piecewise linear approximation. The present theory can effectively model closed
circuit as well as open circuit electric boundary conditions in the piezoelectric layer as required in
sensory and active applications. The accuracy of this theory is established by comparison with the
exact 2-D piezoelasticity solutions for beams of highly heterogeneous lay-ups with elastic
substrate consisting of a test case, a symmetric composite one and a sandwich one. The zigzag
theory yields very accurate values of natural frequencies, modal displacements and stresses, and
steady state undamped and damped forced response under harmonic electromechanical loads in
the whole frequency range for moderately thick and thin highly heterogeneous beams and a small
error for the thick beams. Unlike other layerwise theories, the present accurate theory is also
economical since the number of primary displacement variables is the same as that of the FSDT.
The error in the FSDT is large for natural frequencies of higher modes and for moderately thick
beams. The error of the FSDT solution for forced response is large for moderately thick and even
thin beams with S ¼ 10; especially for the test beam and the sandwich beam.
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Fig. 14. Percentage error of present theory and FSDT for amplitude *wm and phase k under load case 2 for

n ¼ 1; %c ¼ 0:1:
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Fig. 15. Amplitude *wm and phase k for test beam (a) under load cases 1 and 2 ðn ¼ 3Þ:

Fig. 16. Amplitude *wm and phase k for composite beam (b) under harmonic pressure with actuation potential.
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Appendix A

The expressions for the functions RkðzÞ;RkjðzÞ are given by

RkðzÞ ¼ RkðzÞ=Rk0

2 ¼ #Rk
1 þ z #Rk

2 þ z2 #R3 þ z3 #R4;

RkjðzÞ ¼ R
j

kfðzÞ � RkðzÞR
k0

j1=Rk0

2 ¼ #R
kj
1 þ z #Rk

j1 þ z2 #R
j
5 þ z3 #R

j
6

with

ð #Rk
1 ; #R

k
2 ; #R3; #R4Þ ¼ ðRk

1 ;R
k
2 ;R3;R4Þ=Rk0

2 ;

#R
kj
1 ¼ R

kj
1 � #Rk

1Rk0

j1 ;
#R

j
5 ¼ R

j
5 � #R3R

k0

j1 ;

#Rk
j1 ¼ Rk

j1 � #Rk
2Rk0

j1 ;
#R

j
6 ¼ R

j
6 � #R4R

k0

j1 ;

Rk
1 ¼ %Rk

2 � %Rk0

2 ; RkðzÞ ¼ Rk
1 þ zRk

2 þ z2R3 þ z3R4;

R
kj
1 ¼ %Rk

j1 � %Rk0

j1 ; R
j

kfðzÞ ¼ R
kj
1 þ zRk

j1 þ z2R
j
5 þ z3R

j
6 ;

%Rk
2 ¼

Xk

i¼2

zi�1ðRi�1
2 � Ri

2Þ; %Rk
j1 ¼

Xk

i¼2

zi�1ðRi�1
j1 � Ri

j1Þ;

Rk
2 ¼ ak

1R3 þ ak
2R4; Rk

j1 ¼ ak
1R

j
5 þ ak

2R
j
6 þ ½Ck

3j � #ek
15C

j
fðzkÞ�= #Qk

55 þ %C j
fðzkÞ;

ak
1 ¼ 2ðCk

1=
#Qk
55 � zkÞ; ak

2 ¼ 3ð2Ck
2=

#Qk
55 � z2kÞ;

R3 ¼ 4CL
2 =D; R

j
5 ¼ �ð2z20C

L
3j þ 4CL

2 C
j
5 Þ=D; D ¼ 4z20C

L
1 � 8z0C

L
2 ;

R4 ¼ �4CL
1 =3D; R

j
6 ¼ ð4z0C

L
3j þ 4CL

1 C
j
5 Þ=3D;

Ck
1 ¼

Xk

i¼1

#Qi
55ðzi � zi�1Þ; Ck

3j ¼
Xk

i¼1

½#ei
15fC

j
fðziÞ �C j

fðzi�1Þg � #Qi
55f %C

j
fðziÞ � %C j

fðzi�1Þg�;

Ck
2 ¼

Xk

i¼1

#Qi
55ðz

2
i � z2i�1Þ=2; C

j
5 ¼ %C j

fðz0Þ � #e115C
j
fðz0Þ= #Q1

55: ðA:1Þ

The beam damping coefficients are defined by

#c1 ¼ bc1; c
j
f ¼ bc1 %C

j
fðzLÞ; c

jj0

f ¼ bc1 %C
j
fðzLÞ %C

j0

f ðzLÞ: ðA:2Þ
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Using the notation /?S ¼
PL

k¼1

R z�
k

zþ
k�1

ðyÞb dz; the beam inertia elements are defined by

½I11; I12; I13; I
j0

14� ¼ /r½1; z;RkðzÞ;Rkj0 ðzÞ�S; I
jj0

44 ¼ /rRkjðzÞRkj0 ðzÞS;

½I22; I23; I
j0

24� ¼ /rz½z;RkðzÞ;Rkj0 ðzÞ�S; ½ %I22; %I
j0

24� ¼ /r½1;C j0

f ðzÞ�S;

½I33; I
j0

34� ¼ /rRkðzÞ½RkðzÞ;Rkj0 ðzÞ�S; %I
jj0

44 ¼ /rC j
fðzÞC

j0

f ðzÞS: ðA:3Þ

The beam stress resultants Nx;Mx;Px;Qx;S j
x ; %Q

j
x and the beam electric displacement resultants

H j;G j are defined by

Nx ¼ /sxS ¼ A11u0;x � A12w0;xx þ A13c0;x þ A
j0

14f
j0

;xx þ b j0

1 f
j0 ;

Mx ¼ /zsxS ¼ A12u0;x � A22w0;xx þ A23c0;x þ A
j0

24f
j0

;xx þ b j0

2 f
j0 ;

Px ¼ /RkðzÞsxS ¼ A13u0;x � A23w0;xx þ A33c0;x þ A
j0

34f
j0

;xx þ b j0

3 f
j0 ;

S j
x ¼ /RkjðzÞsxS ¼ A

j
14u0;x � A

j
24w0;xx þ A

j
34c0;x þ A

jj0

44f
j0

;xx þ b jj0

4 f j0 ;

Qx ¼ /Rk
;zðzÞtzxS ¼ %A33c0 þ ð %A j0

34 þ %b j0

3 Þf
j0

;x ;

%Q j
x ¼ /½Rkj

;z ðzÞ � %C j
fðzÞ�tzxS ¼ %A

j
34c0 þ ð %A jj0

44 þ %b jj0

4 Þf j0

;x ;

H j ¼ /C j
fðzÞDxS ¼ %b j

3c0 þ ð %b j0j
4 � %E jj0 Þf j0

;x ;

G j ¼ /C j
f;zðzÞDzS ¼ b j

1u0;x � b j
2w0;xx þ b j

3c0;x þ b j0j
4 f j0

;xx � E jj0f j0 : ðA:4Þ

The elements of the beam stiffness A; %A; the beam electro-mechanical coupling matrices b j0 ; %b j0

and the beam dielectric matrices Ejj0 ; %E jj0 are defined in terms of the material constants by

½A11;A12;A13;A
j0

14;A22;A23;A
j0

24;A33� ¼ / #Q11½1; z;RkðzÞ;Rkj0 ðzÞ; z2; zRkðzÞ; zRkj0 ðzÞ; fRkðzÞg2�S;

½A j0

34;A
jj0

44 � ¼ / #Q11½RkðzÞRkj0 ðzÞ;RkjðzÞRkj0 ðzÞ�S;

½ %A33; %A
j0

34; %A
jj0

44 � ¼ / #Q55½fRk
;zðzÞg

2;Rk
;zðzÞfRkj0

;z ðzÞ � %C j0

f ðzÞg; fRkj
;z ðzÞ � %C j

fðzÞgfRkj0

;z ðzÞ � %C j0

f ðzÞg�S;

½b j0

1 ; b
j0

2 ; b
j0

3 ;b
jj0

4 � ¼ /#e31C
j0

f;zðzÞ½1; z;R
kðzÞ;RkjðzÞ�S;

½ %b j0

3 ; %b
jj0

4 � ¼ /#e15C
j0

f ðzÞ½R
k
;zðzÞ;R

kj
;z ðzÞ � %C j

fðzÞ�S;

E jj0 ¼ /#Z33C
j
f;zðzÞC

j0

f;zðzÞS; %E jj0 ¼ /#Z11C
j
fðzÞC

j0

f ðzÞS: ðA:5Þ

The mechanical load F2 and electrical loads F
j
4 are defined by

F2 ¼ bðp1z þ p2
zÞ; F

j
4 ¼ b½�p1z %C

j
fðz0Þ � p2z %C

j
fðzLÞ þ Dzðx; zL; tÞdjnf � Dzðx; z0; tÞdj1 þ qjidjji �; ðA:6Þ

where dij is Kronecker’s delta.
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The elements of the operators %L and L are given by

%L11 ¼ I11; %L12 ¼ �I12ð Þ;x;

%L13 ¼ I13; %L1;3þj0 ¼ I
j0

14ð Þ;x;

%L22 ¼ I22ð Þ;xx � %I22; %L23 ¼ �I23ð Þ;x;

%L2;3þj0 ¼ �I
j0

24ð Þ;xx þ %I
j0

24; %L33 ¼ I33;

%L3;3þj0 ¼ I
j0

34ð Þ;x; %L3þj;3þj0 ¼ I
jj0

44 ð Þ;xx � %I
jj0

44 ;

L11 ¼ �A11ð Þ;xx; L12 ¼ A12ð Þ;xxx;

L13 ¼ �A13ð Þ;xx; L1;3þj0 ¼ �A
j0

14ð Þ;xxx � b j0

1 ð Þ;x;

L22 ¼ �A22ð Þ;xxxx; L23 ¼ A23ð Þ;xxx;

L2;3þj0 ¼ A
j0

24ð Þ;xxxx þ b j0

2 ð Þ;xx; L33 ¼ �A33ð Þ;xx þ %A33;

L3;3þj0 ¼ �A
j0

34ð Þ;xxx þ ½�b j0

3 þ %A
j0

34 þ %b j0

3 �ð Þ;x; P1 ¼ P3 ¼ 0; P2 ¼ �F2;

L3þj;3þj0 ¼ �A
j
44ð Þ;xxxx þ ½�b jj0

4 � b j0j
4 þ %A

jj0

44 � %E jj0 þ %b jj0

4 þ %b j0j
4 �ð Þ; xx þ E jj0 ; P

j
4 ¼ �F

j
4 ; ðA:7Þ

for ðj; j0Þ ¼ 1;y; nf: The non-zero elements of #L are

#L22 ¼ �#c1; #L2;3þj0 ¼ #L3þj0;2 ¼ c
j0

f ;
#L3þj;3þj0 ¼ �c

jj0

f : ðA:8Þ

Appendix B. Nomenclature

Akl ;A
j

k4;A
jj0

44 ; %A33; %A
j
34; %A

jj0

44 elements of beam stiffness matrices
a; b; h length, width, and thickness of the beam
dij ; eij; eij ; Zij piezoelectric strain and stress constants; dielectric constants,

permittivities
Ex;Ey;Ez;Dx;Dz;f electric field components, electric displacements, electric potential
E jj0 ; #E jj0 elements of beam dielectric matrices
G j;H j electric displacement resultants
Gzx;Yx;r shear and Young’s moduli; density
Ikl ; I

j
k4; I

jj0

44 ; %I22; %I
j
24; %I

jj0

44 beam inertia elements
M;C;K inertia, damping and stiffness matrices
Nx;Mx;Px;Qx;S j

x ; %Q
j

x stress resultants
S thickness parameter a=h
%U; %P displacement and electric potential vector, load vector

u;w; u0;w0;c0 displacements, mid-plane displacements and shear rotation
x; y; z co-ordinates in axial, width and thickness directions
sx; tzx; ex; ez; gxz stresses; strains
C j

fðzÞ interpolation functions
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on;o natural and forcing frequencies
b j

k ; b
jj0

4 ; %b j
3 ; %b

jj0

4 elements of beam electromechanical coupling matrices
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